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THE INTRODUCTION OF ALGEBRAIC OPERATIONS ON THE SET OF 
TRAJECTORIES OF A NON-LINEAR CONTROL SYSTEM* 

A.I. PAWASYUK 

The problem of the stabilisation of a mechanical control system is considered. 
The controls ensuring the stability in the large are determined using new 
algebraic operations. An example of the control of a mechanical system by 
means of two moments is given. 

1. Introduction. Consider the following control system (an asterisk denotes trans- 
postion): 

T' = f (s. u); x = (x1, . . .,.z,) *, u = (u,, . * .* u,)' (1.f) 

We shall call the solution x(t) of (1.1) corresponding to the control u(t), the trajectory 
of (1.1) and denote by W the set of all pairs s(t),u(t) of vector functions sayisfying (1.1). 
We shall assume that the limits of variation of t, usually infinite, are determined by the 
problem in question (they need not be specified). The aim of this paper is to introduceabstract 
laws of addition 9 and multiplication by a number 0, applied to the elements of the set W 

associated with the dynamics of the system. 
The following linear system serves as a special case of system (1.1): 

x' = Ax + Bu (1.2) 

where A and B are the nXn and n X m matrices respectively. The operation of adding two 
trajectories x'(t) and s"(t) is determined by those operations in Euclidean space 

2J" (t) -1 2' (r) + zx (t), hz (t) (1.3) 

therefore we can write for (1.2) 8 = -i-, 0 = . . The laws (1.3) for the trajectories have the 
corresponding laws of composition for the controls 

uIN (1) = u' (t) + U" (t), hu: (t) (1.4) 

The trajectory z"'(t) with initial condition z"'(O)= s'(O)+ s"(O), corresponds to the 
trajectories r'(t) and z"(t) with initial conditions x'(0) and s"(O), i.e. the initial condi- 
tions obey the same laws of composition as the trajectories. 

The laws of composition (1.3), (1.4) for the basis of the analysis and synthesis of the 
linear automatic control systems. For this reason it is natural that we should try to extend 
them in some manner to non-linear systems. Two different apprtiaches are possible. In the 
first method we derive the laws of composition on the set w from R”, R” by induction, i.e. 
we determine them according to (1.3). This leads to linearization methods. The second 
approach involves changing to new laws of composition @, 0, and connectingthem with the laws 
of dynamics (1.1). We shall adopt the second approach. 

On introducing the laws ,s T 0 we find that system (1.1) is linear, though not in the 
sense of the operations i_,* (1.3) induced from R",but in the sense of the new laws Q,o, 
and not in an approximate manner as in linearization methods, but exactly. The functional 
representation entry (u (0) - exit@(t)) becomes linear (not approximately, but exactly) for 
the laws of composition @,o. The principle of superposition holds: the trajectory 3' I*) 8 
ZH (.) corresponds to the control u'(a)@ u"(.), and similarly, &OS(.) corresponds to 
h 0 a(.). 

A considerable numer of corollaries can be drawn from this, connected e.g. with transfer- 
ring the methods of analysis and synthesis of the linear systems to the non-linear systems, 
but in terms of the operations @+, 0, The method of synthesising the regulator of a non- 
linear system with prescribed requirements concerning the dynamics given below, represents one 
such application and is based on non-linear continuation of the regulator of the linearized 
system, from the matching neighbourhood to the whole phase space of the system. The proposed 
approach can be used with a systems of the form (3.11, (3.11) and condition (3.121, when 
system (5.8) has a unique solution in prts..,pm. The exact conditions are given in Theorem 
7.1. 

To avoid possible misunderstanding, we will assume without discussion that from now on 
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1 <m<n L. 

everywhere. 

2. New law @ of addition in Rn. We shall introduce the law of composition $?, on 

the set R” in the form of a differentiable vector function 'P (I', z") which places two vectors 

xl, x" E R” in 1:l correspondence with the third vector x" c R" i. We write this as follows: 

P = 'p (I', 5,) = 5' &x)) (2.1. 

We seek the law of composition au for the control u(t) in the form of the function 

ZP = 11, (5', u', X", u") = U' @&" i2.2) 

which places the control vector u" E R” in 1:l correspondence with every two states x'. x" 

and control vectors 111, u*. 

Introduction of the new laws @,, 12, simplifies the study of the system, provided that 

the laws @,, m2U induce, for the non-linear system, the laws of addition of trajectories and 

controls in exactly the same manner as the law of addition +in R"induces the addition of 

trajectories (1.3) and controls (1.4) in the linear system. Therefore, we shall require that 

the laws @%,$" do not cause departure from the set W. This means that the equations 

5" (t) = f (2' (t), u' (t)), 5'" (t) = f.(x" (t), U'I (t)) (2.31 

must imply 
5'" (t) = f (x", U") (2.1) 

On the other hand, according to (2.1), (2.3) we have 

x'" (t) = r&f (x’, 24’) f ‘px- f (2, u”) (2.5j 

where CPX'? cpx- are the corresponding matrices of the partial derivatives. From (2.4) and (2.5; 

we obtain the fundamental equation in partial derivatives 

f (cp (x’, x7, u”‘) = ‘pd (x’, x1)) f (x’, u’) j 9%” (x’, x”) f (ZS, un) (2.6) 

The equation reflects the fact that the new laws of combination s,.@,, introduced as the 

mappings R”xR” + R”, R”xR”‘xR”xR”‘+ R”, induce the laws of composition for the trajectories. 

This means that if x'(t), x'(t) satisfy on a<t< b equation (1.1) for u'(t)and u"(t) respect- 

ively, then the vector function x"'(t) defined for every t by the equation 

fl (0 = cp (2’ (4, x” 0)) (2.7) 

satisfies (1.1) after substituting into it of the vector function u"(t) given for every t 
by the formula 

u"' (r) = $ (z' (t), u' (t), 5" (t), uV (t)) (2.8) 

When it is clear from the text which vectors do combine, whether z or u, we can write 

instead of @,, @,, simply @. 

3. Solution of the equation defining the laws @,,&. We shall limit ourselves 

toconsidering a system,linearwith respect to the control 

x’ = X’(X) + Y' (5) u; x’ (I) = 12”;y, Z(z) =~._.T!. 
where X”(x) is a column and Y” (x) is an n X m-matrix. The domain of variation of u is the 

wholespace R”‘. Let us denote by rl the image of the mapping u- Y"(x)u, i.e. rx = Y’(x) R”. 

Theorem 3.1. Let cp(x',x") be a continuously differentiable function defining on R” the 
structure of the commutative group by the formula (2.1). Then we have everywhere 

rank 'px, (z', 5") = rank 'p=- (x', x") = n (3.2) 

Proof. Let x0" be an element inverse to x"with respect to addition 8. Then x @ xU '3 

xoa = 5, which we can write in the form g (cp(x,x"),x,") = I. Differentiating this expression 

with respect to z, we obtain 

(PI+ (~9 s") = R 

where E is the unit matrix. Expression (3.2) follows from this. 

We can write equation (2.6) for system (3.1) in the form 

X" (m,) + y" (qJ) Ip = q+ [X0 (5') + Y” (2’) u’l + q=- IX” (z”) + Y” (I”) u”1 (3.31 
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Theorem 3.2. To find a continuously differentiable function cp(z',r") and a function 
+ (I', u', xS, US), which will satisfy equation (3.3) for all x',x",u',u~, it is necessary that 
for all x1, x* E It". 

TX, rx. '5. r, 13.4) 
cp,. X" (I') -i- 'p+- X" (z") - X" (C$) E I?, (3.5) 

Tf ‘p defines on R” the structure of the commutative group and we have, for all SE R" 

rank 1’” (t) = m (3.6) 

then (3.4) is equivalent to the equation 

cp,,r,p = r, (3.7) 

Conversely, if 
conditions (3.41, 

T(x',x") is a cont;,nygl; differentiable commutative function for which 
(3.5) hold for all 

such that 1p,(p satisfy equation (3.3) f& all 
", then a function J!(x', u',z",u"), can be found 
x', x" E R”, u’, u” E P. 

Proof. Let (p(z',x') be a differentiable function satisfying (3.3) together with some 
function g, Assuming in (3.3) U' SG u" iii: 0 we obtain, for some z+, = \I; (r', 0, z", 0)~ R” 

which again means 

For equation 
cient that 

X” (9) + Y” (tp) u* = rpr,X” (cd) + c&-x (x”) (3.8) 

(3.5). Let us subtract (3.8) from (3.3) 

Y" (cp) (11 - UJ = T,PY" (5') U' -+ r&Y" (I") U" (3.9) 

(3.9) to have a solution in $ for any U', U " it is necessary and suffi- 

r, 3 cp,*r,* + cp<re (3.10) 

and this, in turn, is equivalent to two inclusions 

c~~.r+, c rs . (PXwrNe c rcF 
If (3.6) holds, then dim rl = m for any x. If moreover cp defines a group, then accord- 

ing to Theorem 3.1 we have (3.2). Then dim cp,,I',, =m and the inclusion (3.4) becomes (3.7). 
Conversely, (3.5) implies that u,exists satisfying (3.8). For the commutative function 'p (z',z") 
(3.4) implies two last inclusions, and from this it follows #at (3.9) has a solution in 9. 
Combining (3.8) and (3.91, we obtain (3.3). 

Let US now consider a system with constant coefficients acted upon by the controls 

Y 
YO= o I II =const; Y = 1 Y;1, * * . , Yl, 

Y ml,- .- 1 
Y mm II (3.11) 

Theorem 3.3. Let 
rank Y = m (3.12) 

Then, in the case of a continuously differentiable function cp(x',r")condition (3.7) is 
equivalent to the statement that when i> m, the function cpi is independent of ’ Xl,. . .1X, , 

n 
Xl , . . ., xm 

M 

‘pi = ‘pi (&+I, . . . , Xn’, Iit+, . . . ,X,*), m + 1< i < n (3.131 

When (3.13) holds, the inclusion (3.5) is equivalent to 

(3.14) 

Proof. By virtue of (3.11) and (3.12) rr =const is a linear subspace stretched over the 
first m coordinate axes. From this it follows that for (3.7) to hold it is necessary and 
sufficient for the mi l-th to n-th coordinates of the vectors g~~,Y"u to be zero for all 
u E R"'. This is equivalent to requiring that all elements of the matrix tprSY" lying in the 
m -+ I-th to n-th rows be zero 

* acp. 

i!i j 

(-$YjfO=O, i=m+l,nt+Z ,..., n, l=i,2 ,..., m 
j=l 

By virtue of (3.12),this is equivalent to requiring that &pilaxjssO for all x'and x", 
for i = m _t 1, m + 2, 1 ..,n, j= 1,2,...,m, and this in turn is equivalent to (3.13), which 
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implies the equivalence of (3.5) and (3.14). 
We shall define the law of addition ,& over the coordinates with indices m -7 1 to $7, 

in the usual manner 

cp. 
case 

‘pi (x’s x”) = x,’ + Xi”, m -+ 1 < i < n (3.15) 

In this case equation (3.14) takes the form 

2 (x’) f Z (I”) = Z (cp), Z (5) E Rn-m (3.16! 

The latter expression, together with (3.15), defines 2(n- m) equations for determining 
It is preferable that they should give q uniquely, although this is usually not the 
when n> 2(n -m). Therefore, when n>2(n- m), we complement system (3.16) with 2m -II 

equations of the form e.g. (3.15), in order to make cp uniquely definable. This corresponds 
to considering the following vector equation: 

x (2') + x (rn) = x (cp), x (x) E R" (3.17) 

in which the first n - m equations are identical with (3.16) and the last m equations are 
identical with (3.15) 

xi (5) = zi (x) = Xm+iO (x), 1 < i < n - m (3.18) 

Xi (5) = lit m 4 i < i < fl (3.19) 

If n > 2 (n -m), we specify the components Xi (x), n-m + I< i Q m in a suitable manner, 
e.g. Xi (I) = Xi. The situation n< 2(n - m) is also permitted. In this case we determine 

Xi (x), m + 1 <i < n, according to (3.19) and the components Xi (r), I< i < m according to 
(3.18). 

Theorem 3.4. Let 
1) equation (3.17) have a solution cp (x',z") for any x),x* E R” 
2) the equation X (x) = X (I') implies that z = 5' 
3) the following relation holds: 

x (0) = 0 

4) equation 
x (r) + x (z") = 0 

has a solution x"(x)for all x. 
Then g, (x', 5") imposes on R"the structure of a commutative group. 

Proof. According to (2.1) and (3.17) we have 

x (x' @ 5") = x (I') f x (x") = x (x") + x (I') = x (r" @ 5') 

(3.20) 

(3.21) 

This, together with condition 2 of the theorem yields 5' 8~" =x" 8 I'. We obtain in the 
same manner 

x ((I' @ rl) (3 P) = x (5' @ x") + x (x") = x (x') + 
x (x") + x (XV') = x (I') +- x (5" @ 5") = x (r' T$ (.r" 9 @ ZU')) 

This, together with condition 2 of the theorem shows that the operation 3 is associative 
(x' @ 2") @ I"' = x' @ (x* 9 5"'). Since by virtue of (3.20) X (x @O) = X (x) i- X (0) = X(I), 
from which according to the condition we have 22 @ 0 =x, it follows that 0 represents a null 
element also for the operation 5. From (3.21) it follows that x'(r)is the inverse of 5. 
Indeed, X(x) + X(x’) = X(x @ 5’) = 0 = X (0). Then from condition 2 of the theorem we obtain 
x @ x0 = 0. 

When n > 2(n- m), the solution of (3.17) satisfies (3.16). When pi < 2(n - m)we use 
this fact as an assumption. In this case the theorem reduces the construction of the opera- 
tion 3, to solving equation (3.17). 

We obtain the law of composition (2.2) for the control vectors of system (3.1), (3.111, 
taking (3.12) into account, from the first m equation of (3.3). We write these equations 
using the notation of (3.11, in the form 

F(q)+ YJ,=@‘1[X0(5’)fY’li] fa$[?i~(.q +Y’u”] (3.22) 

Since according to (3.12) Y has an inverse, we obtain the following explicit formula: 

11, = Y-l (01 IX" (5') f Y" u'l 7 CD, [X" (x") + y" u'] -F (Cph (3.23) 



4. New laws of multiplication by the numbers a=,& we shall determine the 
multiplication law h 0,s as a function p&x), mapping R X R”+ R” 

P(L4 =hOxz (4.1) 

We shall seek the multiplication law hO,u in the form of a function R x R”’ x It"+ R” 

~(~,44=aLu (4.2) 

Just as in the case of addition, we shall requre the laws (4.1) and (4.2) to transform 
every solution x(t)of system (1.1) corresponding to the control function u(t), into a new 
solution x' (t) = p (k,x (t)) corresponding to the control function u' (t) = q (h, u (t),x (t)). This 
means that the equation 

2' = f (x, u) (4.3) 

must yield 
P’ 09 4 = f (P (A, 4, q (L p, 4) (4.4) 

On the other hand, we have by virtue of (4.3), 

P' (A, 5) = Af (2, 4 (4.5) 

Relations (4.4) and (4.5) yield the fundamental partial differential equation for deter- 
mining the laws Q,, Q, 

f (P (h, 4 4? (L u* 4) = PI (L 4 f (.t, 4 (4.6) 

Whenever it is clear from the text which vectors are multiplied, whether I or u,weshall 
write instead of OX, (&, simply 0. 

5. Solution of equations determining the laws Q=, Q,. We shall restrict our- 
selves to considering system (3.1) ~ 

Theorem 5.2. Let the function p&t) be continuously differentiable in z, and define 
thAe;;ltiplication h 0 x satisfying the condition h-'o=(h Orx)-x for h# 0. Then for 

we have 

rank pt (h, x) = n (5.1) 

Proof. Differentiating the equation p(h-‘,p (h,z))=z with respect to t, we obtain 

PX (A-', P (h, 5)) p+ (A, 2) = E, from which (5.1) follows. 
We rewrite (4.6) for system (3.1) in the form 

X0@) + y" @) q =i: p* IX" (2) + Y"(x)ul (5.2) 

Theorem 5.2. The necessary condition for finding a function p&x) continuously differ- 
entiable in I and a function q(h,u,x) which satisfies (5.2) for all x,h is, that 

PSx c rpt PXX" (4 -x0 @) Er, (5.3) 
for all TV R”, h=R. 

If p (h, 4 I continuously differentiable in z, 
Z)EZ, afo,o~,t=o 

defines the multiplication law A-lQ,(h 0, 
and rank Y(z)=m for all z=IP, then the first condition of (5.3) 

is equivalent to 
prrx = ro, hf 0 (5.4) 

Conversely, if p&x) is a function continuously differentiable in z for which condi- 
tions (5.3) hold for all XE R",h= R, then a function q(h, u,t) can be found such that p, q 
satisfy (5.2) for all z, u, b. 

Theorem 5.3. Let u(t)be constant and let the conditions (3.11) and (3.12) hold. Condi- 
tion (5.4) for the function p&,x) differentiable in z and such that p(O,s)=O, is equiv- 
alenttothe factthat the functions pi (h,z) with i>m + 1 are independent of x1,...,+,, i.e. 

Pi (a, 2) = pi (A, Xm+St 5) m+l<i<n . ..I 78, (5.f) 

When (5.5) is satisfied, the second inclusion (5.3) is equivalent to the relation 

# (a, 2) z tx) - z @I. pp - (5.6) 

The proofs of Theorems 5.2 and 5.3 are analogous to thoseof Theorems 3.2 and 3.3. 
Let us now specify the law of multiplication o= over the coordinates numbered m+i 

to xl, in the usual manner p, (A, z) = k,, m + i < t f n. Then Eq.(5.6) will become 
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?a (5) = z (P) c - 
_ 

Just as in the case of addition, we introduce the equation 

J.X (5) = x (P (A, 2)) ! 5 . 3 

where X (z) is the same function as in (3.17). 

Theorem 5.4. Let the conditions of Theorem 3.4 hold and equation (5.8) have a solution 

for all xER!',hER. Then the operations @,,o, define on @the structure of a linear 

space. 

Proof. According to (5.8) we have 

x @ (al, P (%, 2)) = LX (P (L 2)) = W*X (5) = x @ (hlh,, z)) 

and from this we obtain, according to condition 2 of Theorem 3.4, P (L P (h?, d) = P (Lhz, 2) 
which can be rewritten in the notation 0 in the form h,Q (h&s) = (&.)gs. Similarly, we 

have 101 =x. 

Let us verify that the axiom of distributivity is satisfied. According to (5.8) and 

(3.17) 

X Q (aI + a,, 5)) = (aI + b) X (5) = alx (2) +h,X (4 = 

X (P (aI9 4) + X (P (a,, 2)) = x (CP TV (aI, 29, P (h?, I))) 

Condition 2 of Theorem 3.4 implies that p(aI + a,,s) = ‘p (p(h,,z), p (a,,2)), which will be 

written in the @,o notation as (hi +&)oz = (h, 0 z)@ (X, Q x). According to (5.8) and 

(3.17) x (P (a, 'P (d,~"))) = ax ('P (z', II)) = ax (5') + ax (q = 
x (P (a, 17) + x (P (a, 57) = x (CP (P (a, i), p (a, 2))) 

and this yields, by virtue of condition 2 of Theorem 3.4. P (a, CP (5’ + ~7) = CP (P (a, 17, P (a, 17) 
or a 0 (5' + 2~") = (a 0 d)g (a Q 5"). 

We note that condition 4 of Theorem 3.4 is in this case redundant, since it follows from 

the solvability of (5.8). Moreover, 

0 has a solution. 

the solvability of (5.8) implies that the equation X(x0)= 
Placing the origin of coordinates at x,satisfies condition 3 of Theorem 

3.4., therefore only the first two conditions of Theorem 3.4 are essential. 

Theorem 5.4 reduces the construction of the law xz to solving the equation (5.8). 

Just as for v, we can obtain an explicit formula for g 

Q P”, u. x) = y-l {P [XJ (s) + y”u] - F (p (a, z))) 
/ dPl 8PI 

-Lg-“‘“Zn 

p = . . . . 
d ,I 

---=. 8Pnl 
u’.Q .-q- 

(5.9) 

6. Differentiability of the function cp and p. Since the matrices of partial 

derivatives in z of the functions (p and p occur in the fundamental equations (2.6) and (4.6), 

it becomes important to explain the conditions which guarantee the existence of these deriv- 

atives. 

Theorem 6.1. Let the conditions of Theorem 5.4 hold; the function X(r) is 1 >> 1 times 

continuously differentiable and for all I E R" 

rank Xx (s) = 18 (6.1) 

Then the functions 'P (5'. .0, P (a, z), specified as solutions of equations (3.17), (5.8), 

are 1 times continuously differentiable in all variables, and the following relations hold: 

cp (.r', rV) = 5' + zlr + 0 (11 I’ II + II XV 11 ) (ti.2) 
P (a, x) = k + aa (4 + 0 (a tz f a (1)1) (6.3) 

Here Q (z) = 0 (11 5 (1 ), lim ~~‘0 (e) = 0 (E --f 0). 

Proof. The continuous differentiability of 'p and p follows from the theorem on an impli- 
cit function. We shall prove (6.3). From (5.8) and the differentiabilrty of the solution of 

X (p) = r, r = aX (z) it follows that 

P (h, Z) = x,-l (0) r i- 0 (r) = x,-l (0) ax (X) + 0 (hx (t)) = 
Ax,-1 (0) lx, (0) 5 + e (41 + 0 ([ax, (0) x + a0 (z)~) = 
hr t Izx,-l (0) 0 (4 + 0, (a Is + x,-l (0) 0 (z)~) 

and from this (6.3) follows. We prove (6.2) in the same manner. 

Henceforth, we shall require two mappings R”+ R” defined by the formulas 

(6.4) 
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Y = x (5) = lim h-'p (h, z); 5 = s (Y) = lim p (1-r, hy) (6.5) 
h-0 h-0 

Theorem 6.2. Let the conditions of Theorem 6.1 and condition 

II X (5) II + m as II 511 * m (6.6) 

all hold. 
Then the limits (6.5) exist; the functions x(z) and s(y)are 1 times continuously differ- 

entiable, the mappings y,s define the isomorphisms of the space R” with operations @,, Qx 
and R” with the usual operations of addition + and multiplication by a number; the mappings x 
and s are defined uniquely by the equations 

x, (0) % (s) = X (z) (8.7) 
X (s (Y)) = X, (0) Y (6.8) 

and the following relations hold: 

s (% (x)) = 2, % (s (Y)) = Y (6.8) 

Xi (4 7 Ii, S (Y) = yl, m + i < i < n (6.10) 

ProOf. From (6.1) and (6.4) we obtain (6.7), and this implies the differentiability of 
X. By virtue of Theorem 5.4 ~~z,o, define a linear space on R". By definition, p and p, 
are solutions of (3.17) and (5.8), therefore according to (6.71, 

x, (0) x (5' '3 2") = x (5' Q 5") = x (2') + x (z") = 
x, (0) x (2') + x, (0) x (5"); x, (0) x (h 0 2) = x (h 0 

0 .2) = hX (2) = x, (0) hx (z) 

This implies, by virtue of condition (6.1), that 

x (I' ,F IV) = % (5') + x'(5"); x (h 0 5) = li% (z) 

i.e. x is a homomorphism of vector spaces. 
According to (5.8) we have X @(h-l, hy)) = h-'X (hy), h # 0, which yields 

X (P (h-l, AYLY)) = X, (0) Y + A-‘0 @Y) (6.11) 

Relation (6.6) and the boundedness of h-'0(&y) as h-+0 together imply the boundedness 
of p (A-',hy) as h+ 0. In this case, if the limit lim p(hql,hy) did not exist as h-0, 
then we could find two different limit points as h+ 0, z’ #z” of the curve p(k-‘,hy). From 
(6.11) we obtain X (z’)=X(x*)=Xx(0)y and this yields, according to condition 2 of Theorem 
3.4, 2) =x1. The contradiction shows that a second limit (6.5) also exists. From (6.11) we 
obtain (6.8). 

From (3.17) and (6.8) it follows that 

X (s (Y') @ s (Y")) = X (s (Y')) + X (s (Y")) = X, (0) (Y' + 8') 

while from (5.8) and (6.8) we obtain 

X (A 0 s (Y)) = J.X (s (Y)) = LX, (0) Y = X, (0) (t) 

When we take condition 2 of Theorem 3.4 into account, the above equations mean that the 
elements y' _t y", ky have the corresponding elements s(y')$ s(y') and ~-OS(Y),_ i.e. s is a 
homomorphism of vector spaces. The unique solvability of (6.7) in x(z) and of (6.8) in s(y) 
implies that %(s(y))=y, s(x(z))zz, i.e x and s are isomorphisms. 

7. Synthesis of automatic control systems based on the isomorphism of 
dynamic control systems. Below we shall understand by W the set of pairs of functions 
x(f), u(t) which satisfy (1.1) and belong to some, previously discussed class. It is under- 

stood that these classes may be represented by: 
1) continuous control functions u(t) and continuously differentiable trajectories z(t); 
2) piecewise continuous u (t) and piecewise continuously differentiable x(t); 
3) Lebesque-summable controls u (t)and absolutely continuous trajectories t(t)satisfying 

(1.1) almost everywhere. 
The operations $,, &, oz, a,, on Wserve to introduce the structure of linear space 

according to the formulas (2.7), (2.8) for addition, and similarly for multiplication. The 
structure is in agreement with the dynamics of the system, i.e is one in which the system is 
linear. 

Suppose we have two systems of the form (1.1) and linear spaces W'and wforthem. We 
shall say that the systems are isomorphic, if the linear spaces W'and W’are isomorphic. AS 
a special case of this we take a single system (1.1) and W1- w = W, and the automorphism 
of the linear space Wserves as the isomorphism. Here the most important automorphism is that 
of multiplication h 0 by a number h# 0. 

Using the concept of isomorphism we can find, for the initial system, a simple isomorphic 
system for use in constructing a regular or a programmed control with the required properties. 
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Then, if the isomorphism itself is free of any pathologies, hopefully the regular or programmed 
control, converted through the isomorphism to the initial system, has the same propertles. 
Specific conclusions can be drawn by inspecting the mapping defining the grven isomorphlsm. 

The pairs of functions fromW'andkVawhich can be transformed into each other by the ISC- 
morphism, will be called isomorphic with respect to this isomorphism. We shall call a certair: 
property of the pair z(r) (t), u(l)(t) fromw'invariant with respect to the isomorphism in question, 
if its presence in z('), UP) implies its presence in the isomorphic pair s@)(t), u(")(t) from w'. 

Consider system (3-l), (3.11) and a system of linear approximation for it 

w'=zJF,(0)y f Yu 

W 
z’=Z,(O)y, y= z ( w&P, ZERn--m, v&P 

/I n 

To construct the isomorphism of systems (3.1) and (7.1), we shall require the 

-L (NX’ (4 + Y’ul = x* (0) II F,(O)Y + yu 
z (4 1 

We shall denote the solution of the equation (7.2) in v and u by v=u(x,y,u) 

u (5, Y, Y) respectively, and define the isomorphisms of systems (3.1) and (7.1) as 

z (0, n 0) + Y (t)? v (t); Y 0) = x (z (0)l v (t) = v (z (0, x (z @))V u (t)) 

Y (0, u (0 -t z (t). u(t); z 0) = s (Y V)), n (t) = u (8 (Y M),, Y (& u 0)) 

i.e. (7.3) or (7.4) is a mapping of the pair of vectors z,u(y, V) into the pair of 
y,v(x,u) which induces the mapping of the vector space of function pairs W(w? 
ing to system (3.1) (or to system (7.1)) into W(w). 

We shall denote by D(y)the locally Lipshitz function R"+ I?". 

(7.1) 

equation 

(7.2) 

and 11= 
the mappings 

(7.3) 

(7.4) 

vectors 
correspond- 

Theorem 7.1. Let the conditions of Theorem 6.2 hold, and let the function X”(x) be 
continuously differentiable. When n < 2 (n -m), we also assume that the solution (3.17) 
satisfies (3.16) and the solution (5.8) satisfies (5.7). Then 

1) the mapping 5 (1)-h c, z; u (t)+ hO,u(t) with hi0 is an automorphism of thesystem 
(3.1), (3.11); 

2) the solutions v(x,Y,u), ~(s,y,v) of system (7.2) exist, are defined uniquely, and are 
continuous functions, and mappings (7.3), (7.4) are isomorphisms of systems (3.11, (3.11) and 

(7.1); 
3) asymptotic stability in tot0 of system (7.1) with the regulator u = D (y) is equiv- 

alenttotheasymptotic stability in toto of the system (3.1) with the regulator U = U (z, x (J), 

D (x (I))) obtained with help of isomorphism (7.4); 
4) the following properties are invariant with respect to the automorphism ho and 

isomorphisms (7.3) and (7.4): a) the trajectory tends to the origin of coordinates as t - co, 
and b) the trajectory reaches the origin of coordinates after the time T. 

Proof. From (6.7) it follows that 

X, (0)x, (5) = X, (5) 

By virtue of (6.1) we find, that (7.2) is equivalent to 

%% (xi[ s’ (I) + Y"u] = n F,&‘)Y + Yu 
z ix) H (7.5) 

From (6.10), (3.11), (3.12) and the invertibility of x,(z) it follows that (7.51, and 
therefore (7.2), have unique solutions in u or u. 

From (5.7) and the relation 00 5 = 0 it follows that Z(0) = 0. The differentiability 
of X"(I) yields Z(p) = Z, (0)~ + O(p). Then from (5.7), (6.3), (6.5),(6.9) we obtain 

Z, (0) Y = Z (z) (7.6) 

We shall show that the mapping (7.3) transforms the pairs x (t), u (t) satisfying (3.1) into 
the pairs y (t), u(t) satisfying (7.1) . Since y = x (z), we obtain from (7.3) 

y' (t) = x, (I) I’ (t) = x,-1 (0) x, (0) x, (I) 2’ (t) = x,-1 (0) x, (I) z’ (1) 

This yields, by virtue of (3.1), (7.2). (7.6), 
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which is identical with (7.1). 
Next we shall show that (7.3) defines the homomorphism of the vector spaces w-+ W". 

Let us check the property of homomorphism with respect to multiplication by a number. Let the 

mapping (7.3) transform the vectors z,u into y,v. Then hQxz,'>,Ouu transform (7.3) into 
some vectors y',v'. By virtue of Theorem 6.2 we have y' = 4. It remains to show that v' = hv. 
From (7.2) it follows that 

x, (a c x)[X’ (a Q 5) $- Y0 (h 0 u,] = x, (0) I/ F, (0) Y' + Yv’ I Z&O4 , 

Then, taking (5.7) and y' = ly into account we obtain 

x, (a 0 x)[X’ (a 0 I) + I” (a 0 u,] = x, (0) I AF, (0) Y + Yv’ 
az (2) I (7.7) 

On the other hand, (5.8) implies that X,(hQz)~~(?.,z)= LX,(z). 
Multiplying (7.2) by h and taking (4.6) into account, we obtain 

xx (0) I ap, (0) Y + WV 
az (4 I = a& (I)[ x’ (x) + Y’u] = 

x, (a 0 4 PI (a, 2) IX’ (4 + Y -q= x, (a 0 x)[X’ (a 0 2) + Y’ (a Q u)] 

Combining this expression with (7.7) we obtain, by virtue of (6.1) and (3.12), U' = hv, 
which we have set out to show. The operation of addition is confirmed in exactly the same 
manner. Thus (7.3) is a homomorphism of W-+ w”. tJe can show in the same manner that (7.4) 
is also a homomorphism of WO-PW. The unique solvability of (7.2) and the identities s (x 
(r)) = 3, x(s(y))zy together imply that (7.3) and (7.4) are mutually inverse isomorphisms. 
The remaining assertions of the theorem follow from the differential properties of the iso- 
morphism x. 

Let us see how we can use the automorphism ho to solve the problem of synthesizing the 
regulator. We shall write, for convenience, xx = hO,x,mh I= ho&. We shall assume that the 
regulator u = D (x) of system (3.1) is already constructed in the neighbourhood of the state 
of equilibrium x = 0, and ensures the asymptotic stability of the state I = 0. Let x (t) be 
the running state of the system. We extend the regulator u = D (x)to embrace the state x(t) 
also, and choose h# 0 to have a sufficiently small numerical value so that the vector XL(~) 
lies within the zone of action of the regulator u =D (x). The resulting isomorphic trajec- 
tories zx((t) have the corresponding isomorphic controls IQ. = D(zk(t)) and 

u (t) = h-Q,D (XL (t)) = h-Q, D (k&z (t)) (7.8) 

Since the regulator D (x)ensures the asymptotic stability of the equilibrium state, it 
follows that xk((t)+ 0 as t* 00. Then we obtain for the continuous function p&x), p (h,O) = 

0, 5 (t) = h-‘&q (t) = p (h-l, 51 (t)) + 0 as t + 00. The quantity h is chosen to be small. 
Therefore the following passage to the limit in (7.8) appears natural: 

U (x) = 1e h_‘Q,D (aOXx) (7.9) 

Let us find the relation between the regulator (7.9) and the regulator obtained from the 
isomorphism of system (3.1) with its linear part (7.1) determined by equation (7.2). Accord- 
ing to (5.2) we have 

X0 (P (a-1, xA)) + Yoq (a-1, xahr 4 = P% (a-5 x4 1x0 (4 + ~w (7.10) 

Since p (a-1, zh) = a-'0 a 02 =x, then multiplying (7.10) on the left by X,(x), and 
using the relation a-lx, (xh) = X,(x) px (a-1, zk), which follows from (5.8) we obtain 

x, (x) 1x0 tx) + yki = a-lx, txk) Ix~(x~) + Yw 

Substituting here the regulator UL = D (XL 0)) we obtain, provided that the limit lim h-D 
(a 0 2) (a+ 0) exists, taking (6.5) and the fact that xk+O as h-+0 into account, 

x, (x) ix” (x) + Ykl = x, (0) Ix,” (0) I/ + ~0 Fi a-ID (a 0 x)i 

where 

lim a-lx0 (xk) = lim a-lx,0 (0) I~ = lim X,“(O)a-lp (a, +j = X,” (0) y (a -+ 0). 

Comparing this equation with (7.2) we find, that when v = lirna_lD (A 0 z) (a+ 0), the equation 
is identical with (7.2). Therefore the regulator (7.9) can be expressed in terms of the 
solution u (x, x (r), v) of (7.2) in the form 
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u (x) = u (5, x (t), ,'iy h-'D (h 3 .r)) 

8. Example. Let us consider the controlled rotation of 

described by the system /l/ 

+' = X" (z) + U,Y,O A UiYSO, 0 (z) = [l - (.Q + 3,2)]+ 

_ 
A_ 

a satellite whose dynamics 1s 

(8.‘) 

a.5 

a 

-0.5; 

The coordinates z1 and I* are components of the spin vector, 

and +r ~4 are components of the auxiliary vector of unit length, 

which arise when we pass from the coordinate system attached 

rigidly to the satellite, to the inertial system. Here t‘I and I+ 

denote the momenta generated by two rocket motors. We pose the 

problem of stabilizing the rotation, i.e. the rotation of the 

satellite about a fixed axis corresponding to r=O is the 
desired state. We obtain the standard problem of stabilizing 
the zero state. Let us pose the problem of constructing a 

regulator Y= U(Z) ensuring the asymptotic stability in the 
large. 

We note that z3, Z, satisfies the inequaiity 132 + x*2 < 1 
by definition, therefore we shall limit ourselves to this region. 

Let us find X(Z) using (3.18), (3.19) as x, = --t+ (2) + 24, 
x, = qo (2) - z3, x, =zg. x, = q. The conditions of Theorem 7.1 are 

satisfied and equations (3.16) take the form 

Remembering that according to (3.15) (z' @z I")~ = z3' + Q", (z' 8 z"), = xl' + zl", we obtain the 

addition laws for the first two components of the state vectors 

(z' CE z")Y = @(I CE 2”) [zY’o(z’) +z,"o(z")]; k = I, 2 

0 (2’ e IV) = [I - (Q’ + ray* - (I,’ + Z&“)‘]‘/’ 

Similarly, from (5.8) we obtain the multiplication law 

hOr~=ll--'(+,'$-~,')]-"'~~o(~); k=1,2; h0zi=hti;i=3,4 

The mapping (6.5) I- x(z) will have the form 

The linear approximation system (7.1) will be written for (8.1) in the form 

. Y1 = -2y, + Y1, Y,' = 2Y, + % (8.2) 
Ys‘ = -Y* + Y,. YI' = Y1- Y3 

We choose a regulator for this system, ensuring the asymptotic stability, in the form 

01 = D, (Y) - -2Y, + OY, + by,; vz = D, (Y) = -2y, + CY, (8.3) 
(1 = 3v5; b = -3.75; c = 3,75 

Solving (7.2) we obtain the regulator isomorphic to the regulator (8.3) 

U, = -21, + 0-l (I) ((Iz~ + bz, - z;rgt, + q*z,) 

II, = -21, + o-1 (2) (CII + IlIp, - I*?ra) 
(6.4) 

and the same regulator can also be obtained according to (7.9), when 

The results of modelling system (8.1) with the regulator (8.4) obtained are shown in the 
figure. The solid curves l-4 correspond to z~,I~,I~,I,. The dashed curves 1, 2 depict U, and 

%. The results of modelling under varying initial conditions lead to the conclusion that the 

closed system obtained is stable in the large and the nature of the transient for it is 
identical with those for the linearized system (8.2). 

We note that sometimes it is best to reduce the dimensionality of the problem in question 

/2/. 
If Y(z)depends continuously on x and (3.6) holds everywhere, then replacing the control 

vector u by Y(z) we can reduce the system to the form (3.1), (3.11), i.e. the dependence of 
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J;(I) on z is no hindrance in the method proposed. 
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ON THE STUDY OF MINIMAX EVALUATION OF PARAMETERS OF 
NON-LINEAR SYSTEMS l 

V.G. POKOTILO 

The problem of the a posteriori minimax evaluation /l/ of the unknown 
parameters of non-linear systems of fairly general form is investigated. 
Approximations of information sets related to the observation process are 
defined using the non-linear theory of duality. The asymptotic properties 
of minimax estimates are also obtained in the case of perturbations that 
can be represented in the form of random processes. Problems of minimax 
observation as applied to non-linear systems were investigated in /2, 3/. 

1. Let us assume that the observed signal conforms to the equation 

Y (t) = g (& z, w U)), t E 10, T1 (1.1) 

where the unknown vector of the parameters z= R" and perturbation ~(2'; e) = {u(t), t E IO, 2’1) 
satisfy constraints of the form 

z E zO, w (t) E w (t) E w, 1 E [O, Tl 

The m-vector of the function g(., ., *) and the input data are assumed to be as follows 
1) 2' and W are compact in R” and R", respectively; 

2) g(t,z,w) is continuous with respect to the set of variables and, moreover, the set of 
functions {g(1,2, u), t 20) is equicontinuous for any zEZ"; 

3) the class of admissible perturbations is defined by the set 

E = {w (2’; .) E C’ IO, 2’1: w (t) E W(t), t E IO, Tl} 

4) the set of possible outputs of system (1.1) 

G (z) = {f (Z'; .): f (1) = g (t, z, w (t)); m (T; *) E E) (1.2) 

is closed in space c" [O, T]. 

Definition 1.1. The set 
Z (7'; y (+)) = {z’: y (7’; ,) E G (2’)) 

is called the information set, compatible with the signal y(T; a) = {y(t), TV IO, T]). 
Points z* (T)E Z(?'; y(.)), somehow separated, will be called the a posterioriminimax 

evaluations of the vector of parameters 2. 
To describe the weak dependence of random processes, which simulate perturbations in a 

stochastic system, we use following definition. 

Definition 1.2. The random process {w(t), t> 0) in the probability space {Q,X,P} with 
the phase space {R', A} is called entirely regular, if 

a (z) = sup AEro, BErYD+T, t>. I P (AR) - P (A) J’ (R) I + 0 t 

as z+ 00, where rbO, O,< a < b < + w,is the o-,algebra generated by {w(t), a < tQ b). 
We will present without proof the statement that defines the entirely regular processes. 


